M.Tech. Program from the Dept. of ME

M. Tech. in Thermal & Fluid Engineering Semester wise detailed syllabus

Sl. No.	Subject Code	SEMESTER I	L	Т	Р	С
1.	HS5111	Technical Writing and Soft Skill	1	2	2	4
2.	ME5101	Advanced Engineering Mathematics	3	1	0	4
3.	ME5105	Advanced Fluid Mechanics	3	0	0	3
4.	ME5106	Gas Dynamics and Propulsion	3	0	0	3
5.	ME5107	Thermo-Fluid Lab-I	0	0	3	1.5
6.	ME61XX	DE-I	3	0	0	3
7.	ME61XX	DE-II	3	0	0	3
8.	XX61PQ	IDE	3	0	0	3
	TOTAL		19	3	5	24.5

Course Number	ME5101
Course Credit	L-T-P-C: 3-1-0-4
Course Title	Advanced Engineering Mathematics
Learning Mode	Lecture
Learning	Complies with PLOs 1-3
Objectives	• This course aims to train the students with the basic and advanced
	mathematical tools required to solve engineering problems.
	• Showcase the utility of mathematics towards the analysis of real-world
	engineering problems.
Course	This course is designed to fulfil the need for basic and advanced mathematics
Description	concepts often used in real-life engineering problems.
	Prerequisite: NIL
Course Outline	Linear Algebra: Matrix algebra; basis, dimension and fundamental subspaces;
	solvability of $Ax = b$ by direct Methods; orthogonality and QR transformation;
	eigenvalues and eigenvectors, similarity transformation, singular value
	decomposition, Fourier series, Fourier Transformation, FFT.
	Vector Algebra & Calculus: Basic vector algebra; curves; grad, div, curl; line,
	surface and volume integral, Green's theorem, Stokes's theorem, Gauss-
	divergence theorem.
	Differential Equations: ODE: nomogeneous and non-nomogeneous equations,
	Wronskian, Laplace transform, series solutions, Frobenius method, Sturm-
	Liouvine problems, PDE. separation of variables and solution by Fourier
	Numerical Technique: Numerical integration and differentiation: Methods for
	solution of Initial Value Problems, finite difference methods for ODE and
	PDE: iterative methods: Iacobi Gauss-Siedel and successive over-relaxation
	Complex Number Theory: Analytic function: Cauchy's integral theorem
	Statistical Methods: Descriptive statistics and data analysis correlation and
	regression, probability distribution.
Learning	• This course would enable the students to solve the mathematical
Outcome	governing equations of engineering problems.
	• The students would be able to realise the connection of Mathematics
	with Physics and Engineering.
Assessment	Mid Semester Examination, End Semester examination, Class test & quiz,
Method	Assignment, Class Performance and Viva

Suggested Readings:

Text Books:

- 1. H. Kreyszig, "Advanced Engineering Mathematics", Wiley, (2006).
- 2. Gilbert Strang, "Linear Algebra and Its Applications", 4th edition, Thomson Brooks/Cole, India (2006).
- 3. J. W. Brown and R. V. Churchill, "Complex Variables and Applications", McGraw-Hill Companies, Inc., New York (2004).
- 4. J. W. Brown and R. V. Churchill, "Fourier Series and Boundary Value Problems", McGraw-Hill Companies, Inc., New York (2009).
- 5. G. F. Simmons, "Differential Equations with Applications and Historical Notes", Tata McGraw-Hill Edition, India (2003).
- 6. S. L. Ross, "Differential Equations" 3rd edition, John Wiley & Sons, Inc., India (2004).
- 7. K. S. Rao, "Introduction to Partial Differential Equations", PHI Learning Pvt. Ltd (2005).
- 8. R. Courant and F. John, "Introduction to Calculus and Analysis, Volume I and II", Springer-Verlag, New York, Inc. (1989).

- 9. K. Atkinson and W. Han, "Elementary Numerical Analysis" 3rd edition, John Wiley & Sons, Inc., India (2004).
- 10. R. A. Johnson and G. K. Bhattacharya, "Statistics, Principles and Methods", Wiley (2008).
- 11. Michael D Greenberg, "Advanced Engineering Mathematics", 2nd Edition, Pearson (1998).
- 12. R.K. Jain and S. R. K. Iyengar, "Advanced Engineering Mathematics" 4th Edition, Narosa; 1st Edition (2002).

Course Number	ME5105		
Course Credit	L-T-P-C: 3-0-0-3		
Course Title	Advanced Fluid Mechanics		
Learning Mode	Classroom lecture		
Learning	Complies with PLOs 1-3.		
Objectives	The course aims to enhance the conceptual understanding of fluid motion, with		
	an emphasis on providing the physical and mathematical background needed		
	to solve fluid dynamics problems.		
Course	The course discusses the integral approach to solve fluid dynamics problems.		
Description	In addition to exact solutions of Navier-Stokes equation, flow dynamics are		
	analysed in both inviscid and creeping limits. The course also covers boundary		
	layer flows and Micro and nano flow.		
Course Outline	Concepts of fluids: Definitions of fluids, concept of continuum, different types		
	of fluid, tensor analysis, governing laws of fluid mechanics in integral form,		
	Reynold's transport theorem, mass, momentum and energy equations in		
	integral form and their applications, differential fluid flow analysis, continuity		
	equation, Navier-Stokes equation and exact solutions. Potential flow analysis:		
	Two-dimensional flow in rectangular and polar coordinates, continuity		
	equation and the stream function, irrotationality and the velocity potential		
	function, complex potential function, vorticity and circulation, flow over		
	immersed bodies and D' Alembert's paradox, aerofoil theory and its		
	application. Viscous flow analysis: Low Reynold's number flow,		
	approximation of Navier-stokes equation, approximate solutions of Navier-		
	Stokes equation, Stokes and Oseen flows, hydrodynamic theory of lubrication,		
	Prandtl's boundary layer equations, Large Reynold's number flow		
	approximation, flow instabilities and onset of turbulence. Micro and nano		
	flow: Physical aspects of micro and nano flows, governing equations, surface		
- ·	tension driven flows, modeling of micro and nano flows.		
Learning	• Students will be able to formulate and solve fluid flow problems using		
Outcome	control volume approach.		
	• Ability to obtain solutions to Navier-Stokes equation under laminar		
	regime for different geometries subject to appropriate initial and		
	boundary conditions.		
	• Knowledge of flows in high and low Reynolds number limits.		
	• Basic understanding of transition to turbulence.		
	• Students will have a grasp on the principles of compressible flow through		
	variable area ducts with/without friction or heat transfer.		
Assessment	Mid Semester Examination, End Semester examination, Quiz,		
Method	Research/literature-review projects, presentations		
Suggested Reading	gs:		
1. White, F.M.	, Viscous Fluid Flow, McGraw-Hill, New York, 3rd edition 2006.		
2. Bachelor G	K. An introduction to Fluid Dynamics, Cambridge University Press, 2007.		
3. Streeter V.I	V.L. and Wylie E. B., Fluid Mechanics, Tata McGraw-Hill, Delhi 2001.		
4. Shames I. H	es I. H., Mechanics of Fluids, Tata McGraw Hill, Delhi, 4th edition 2003.		
5. Douglas and	und Swaffield, Fluid Mechanics, Prentice Hall, 5th edition 2006.		
6. Yahya S. M	., Fundamentals of Compressible Flow, Tata McGraw Hill, Delhi, 3rd edition		
2003.	-		

- 7. Karniadakis G., Beskok, A., and Narayan A. Microflows and Nanoflows , Springer, 1st edition 2005.
- 8. Journal of Fluid Mechanics, Cambridge University Press.
- 9. Physics of Fluids, American Institute of Physics.

Course Number	ME5106
Course Credit	L-T-P-C: 3-0-0-3
Course Title	Gas Dynamics and Propulsion
Learning Mode	Classroom lecture
Learning	Complies with PLOs 1-3
Objectives	The primary focus of this course is to introduce students to the basic principles
	of gas dynamics and propulsion. Emphasis will be given to the fundamental
	concepts of compressible flow, shock and expansion waves, nozzle flows and
	their practical applications. The course further aims to provide understating to
	students to enable them in carrying out engineering analysis of ramjets and
	turbine engines along with their separate components.
Course Description	This course discusses the basics of gas dynamics which includes topics such
	Element flows in pozzles and expansion waves. In the later part, the course
	riows, nows in nozzies and expansion waves. In the later part, the course discusses the basic of propulsions related to various types of Gas turbine
	engines. The course concludes with the discussion the latest emerging trends
	in the field of propulsion.
	Prerequisite: Fluid Mechanics and Thermodynamics or an equivalent course
Course Outline	Gas Dynamics
	Introduction to Gas Dynamics and Review of Thermodynamics; Basic
	Governing Equations; Sonic velocity and Mach number, Stagnation state;
	Normal Shocks: Stationary and Moving Shocks; Rayleigh and Fanno
	Flows; Quasi I-D flows; Convergent Nozzles, Convergent-Divergent
	interactions: Expansion fans: Prandtl Mayer Function: Shock Expansion
	Theory
	110019.
	Propulsion
	Basic idea in aircraft propulsion: Thrust; Modes of Propulsion; Operation
	of Basic Gas Turbine Engine; Turbojet, After-burning Turbojet and
	Turbofan Engine; Detailed analysis of different parts of a Gas Turbine
	Engine: Intake- Subsonic, Compressor Aerodynamics and Losses,
	Combustor (Air-Fuel Ratio, Emission, Alternate fuels), Turbine
	Aerodynamics (Losses and cooling technology); Ramjet and Turboramjet
	Engine (Supersonic Intakes); Scramjet Engine; Infust Equation; Thermodynamic Analysis of jet Engines: Thrust Calculations: Tyrbojet
	Turbofan Ramiet Engine: Emerging Trends with focus on emission
	reduction
Learning	At the end of the course, students will have achieved the following learning
Outcome	outcomes:
	• Understanding of the basic of gas dynamics
	• Ability to understand the physics behind high-speed flows
	• Understanding the basic ideas behind aircraft propulsion
	• Ability to perform thrust calculations for various kinds of aircraft
	engines
Assessment	Mid Semester Examination, End Semester examination, Class test &
Method	quiz, Assignment, Term Paper Presentation

Suggested Readings:

Gas Dynamics

- 1. H.W. Liepmann, and A. Roshko, Elements of Gas Dynamics, Courier Corporation, 2013
- 2. J. Anderson, Modern Compressible Flow with Historical Perspective, Fourth Edition, McGraw Hill Education, 2021
- 3. V. Babu, Fundamentals of Gas Dynamics, Athena Academic Ltd, 2008
- P.H. Oosthuizen and W.E., Carscallen, Compressible Fluid Flow, McGraw-Hill Education, 1997
- 5. A. J. Chapman and W.F. Walker, Introductory Gas Dynamics, Holt, Reinhart and Winston, 1971

Propulsion

- 6. Mattingly, J.D., Elements of Gas Turbine Propulsion, McGraw-Hill Inc., 1996.
- 7. V. Babu, Fundamentals of Propulsion, ANE Student Edition, 2009
- 8. P. G. Hill and C. R. Peterson, Mechanics and Thermodynamics of Propulsion, Second Edition, Pearson Education, 2009.
- 9. G. C. Oates, Aerothermodynamics of Gas Turbine and Rocket Propulsion, Third edition, AIAA Education Series, 1997.
- 10. G. C. Oates, Aerothermodynamics of Aircraft Engine Components, AIAA Education Series, 1985.
- 11. R.D. Flack, Fundamentals of Jet Propulsion with Applications, Cambridge University Press, 2005.
- 12. H. Cohen, G.F.C. Rogers, and H. I. H. Saravanamuttoo, Gas Turbine Theory, 7th Edition Pearson, 2019.

Course Number	ME5107
Course Credit	0-0-3-1.5
Course Title	Thermal Fluid Laboratory-I

Course Learning Objective:

• Design, execution, and evaluation of physical experiments in heat transfer and fluid mechanics.

Course Learning Outcome:

Complies with PLOs 2 and 3.

- Hands-on experience in heat transfer and fluid mechanics experiments.
- Interpretation and presentation of experimental results.

Prerequisite: NIL

Syllabus:

Fluid Mechanics: measurement of flow through Venturi, orifice, and hot wire anemometer, fluid machinery, and wind tunnel, Conduction: estimation of thermal conductivity and heat capacity, Convection: free and forced convective heat transfer coefficients on different geometries including fins, Heat Exchangers: single phase parallel and cross flow heat exchangers, heat transfer, Radiation heat transfer: Stefan-Boltzmann law, Kirchhoff's law, Lamberts Cosine law, Lamberts law of absorption, inverse square law, view factors, DAQ and Signal Processing: DAQ and its components, feedback temperature control, low pass and high pass filters, spectrum analysis.

Department Elective - I						
Sl. No.	Subject Code	Subject L T		Р	С	
1.	ME6101	Multiphase Flow & Heat Transfer	3	0	0	3
2.	ME6102	Computational Fluid Dynamics	3	0	0	3

Course Number	ME6101
Course Credit	L-T-P-C: 3-0-0-3
Course Title	Multiphase Flow and Heat Transfer
Learning Mode	Classroom Lecture
Learning	Complies with PLOs 1-3
Objectives	1. The student should internalize the meaning of the terminology and
	physical principles associated with liquid-vapor phase change heat
	transfer processes.
	2. The student should be able to delineate pertinent transport
	phenomena for any process or system involving phase change heat
	or mass transfer.
	3. The student should be able to use requisite inputs for computing
	heat transfer rates and/or material temperatures.
	4. The student should be able to develop representative models of real
	processes and systems and draw conclusions concerning
	5 The student should become familiar with design of multiplace heat
	5. The student should become familiar with design of multipliase near transfer experiments and concerning measurement techniques
Course	Liquid vanor phase change processes play a vital role in many
Description	technological applications. The importance of this topic is increasing
Description	keeping in view the relevance of topics such as energy and
	sustainability. This course aims to utilize the fundamentals of
	thermodynamics, fluid mechanics, and heat transfer processes to help
	students analyse, model, and predict heat transfer during liquid-vapor
	phase change processes such as boiling and condensation. Importance
	of practical consideration on heat transfer is also dealt with.
Course Outline	Fundamentals: Introduction to liquid-vapor phase change
	fundamentals, kinetic theory, interfacial tension, wettability, boiling,
	nucleate boiling, critical heat flux and dryout mechanisms, transition
	boiling, Leidenfrost, film boiling, nucleation theory, convective flow
	boiling fundamentals, flow patterns and regime map, condensation,
	applications areas: introduction to devices and application areas boilers
	and condensers, nuclear reactor, thermosynhons, heat pipes, and vapor
	chambers Practical considerations: effect of non-condensable gas and
	surface aging. Current trends: Heat transfer coefficient enhancement
	techniques, heat and mass transfer at microscopic length scales and
	gravity levels, microchannels, modeling techniques.
Learning	1. The student should be able to develop representative models of
Outcome	boiling and condensation heat transfer processes and draw
	conclusions concerning process/system design or performance
	analysis.
	2. The student should be able to design multiphase heat transfer
	experiments using suitable measurement techniques
Assessment	Assignments, Mid-Sem Examination, End-Sem Examination, term
Method	paper
Suggested Readings	: arow Liquid Vapor Dhase Change Dhenomene, Taylor and Eroneis: 2nd
I. van C Edition	$a_1 c_2$, Equite vapor rease-change renomena, rayor and readers: 200 a_2007 , ISBN: 0-89116-836-2 and 1-56032-074-5
2. Incrop	era and Dewitt. Fundamentals of Heat and Mass Transfer, Wiley, 6th Edition.
ISBN:	9780471457282
3. Leinha	rd and Leinhard, A Heat Transfer Textbook, Phlogiston Press, 3rd Edition,
ISBN:	0-9713835-2-9

Course Number	ME6102
Course Credit	L-T-P-C : 3-0-0-3
Course Title	Computational Fluid Dynamics
Learning Mode	Classroom Lecture/Hybrid
Learning Objectives	Complies with PLOs 2-3
	This course aims to lay the essential foundations of computational fluid dynamics and enable; (a) understanding of the governing equations of fluid dynamics and their classification, (b) understanding of different discretization methods to solve the governing equations numerically, (c) understanding of different types of grids involved in CFD, (d) understanding of popular CFD algorithms for solving incompressible flows.
Course Description	This course is designed to fulfil the basic concepts of computational fluid dynamics. The course first discusses the general background required for understanding the various numerical methods or discretization techniques involved in CFD. It is followed by a detailed understanding of the two of the popular discretization methods – Finite Difference Method (FDM) and Finite Volume Method (FVM). The course then concludes by proving an overview of other popular CFD methods.
	Prerequisite: Undergraduate Fluid Mechanics and Heat Transfer course
Course Outline	Concept of Computational Fluid Dynamics: Different techniques of solving fluid dynamics problems, their merits and demerits, governing equations of fluid dynamics and boundary conditions, classification of partial differential equations and their physical behavior, Navier-Stokes equations for Newtonian fluid flow, computational fluid dynamics (CFD) techniques, different steps in CFD techniques, criteria and essentialities of good CFD techniques. Finite Difference Method (FDM): Application of FDM to model problems, steady and unsteady problems, implicit and explicit approaches, errors and stability analysis, direct and iterative solvers. Finite Volume Method (FVM): FVM for diffusion, convection- diffusion problem, different discretization schemes, FVM for unsteady problems. Prediction of Viscous Flows: Pressure Poisson and pressure correction methods for solving Navier-Stokes equation, SIMPLE family FVM for solving Navier-Stokes equation, modelling turbulence. CFD for
	Complex Geometry: Structured and unstructured, uniform and non- uniform grids, different techniques of grid generations, curvilinear grid and transformed equations. Lattice Boltzman and Molecular Dynamics: Boltzman equation, Lattice Boltzman equation, Lattice Boltzman methods for turbulence and multiphase flows, Molecular interaction, potential and force calculation, introduction to Molecular Dynamics algorithms.
Learning Outcome	After attending this course, the following outcomes are expected:

	 Ability to classify the partial differential equations involved in fluid mechanics and heat flow and understanding of their physical behaviour. Ability to write CFD codes for the various algorithms covered in this course. Understanding of discretization approach required for the unstructured grids.
Assessment	Mid Semester Examination, End Semester examination, Viva, Written
Method	and Coding Assignments
Suggested Reading Text Books:	3S:
1. J. D. Ar Edition). 2 S. V. Pat	nderson, "Computational Fluid Dynamics", McGraw-Hill Inc. (New
2. S. V. Fdu (New Edi	tion)
3. A. Sharr Applicati	na, "Introduction to Computational Fluid Dynamics Development, on and Analysis", Ane Books, 1st edition 2016
4. K. Mura Transfer ^{**}	lidhar, and T. Sundarajan, "Computational Fluid Flow and Heat", Narosa (New Edition)
5. D. A. A Mechanic	nderson, J. C. Tannehill and R. H. Pletcher, "Computational Fluid es And Heat Transfer", Hemisphere Pub. (New Edition)
6. M. Peric Springer	and J. H. Ferziger, "Computational Methods for Fluid Dynamics", (New Edition).
7. H. K. V Fluid Dyr	Versteeg and W. Malalaskera, "An Introduction to Computational namics", Dorling Kindersley (India) Pvt. Ltd. (New Edition).
8. C. Hir Flows", H	sch, "Numerical Computation of Internal and External ButterworthHeinemann, (New Edition).
9. J. M. Jail Professio	e, "Molecular Dynamics Simulation: Elementary Methods", Willey nal, (New Edition).
10. A. A. Mo Applica	hamad, "Lattice Boltzman Method: Fundamentals and Engineering ations with Computer Codes, Springer (New Edition).

Department Elective - II						
Sl. No.	Subject Code	Subject		Т	Р	С
1.	ME6103	Continuum Mechanics	3	0	0	3
2.	ME6104	Refrigeration and Air-Conditioning	3	0	0	3

Course Number	ME6103
Course Credit	L-T-P-C: 3-0-0-3
Course Name	Continuum Mechanics
Pre-requisites	Mechanics of Solids and Mechanics of Fluids
Learning Mode	Classroom lecture
Course Objectives	

Complies with PLOs 2 and 3

• This course targets students of solid and fluid mechanics, aiming to familiarize them with the fundamentals of continuum mechanics by enhancing their problem-solving skills for engineering problems like structural mechanics, fluid dynamics and heat transfer.

Course Content

1. Mathematical Preliminaries

Introduction to Tensors: Vectors and second order tensors; Tensor operation; Properties of tensors; Invariants, Eigenvalues and eigenvectors of second order tensors; Tensor fields; Differentiation of tensors; Divergence and Stokes theorem.

2. Kinematics of Deformation

Continuum hypothesis, Material (Lagrangian) and Spatial (Eulerian) descriptions of motion, Displacement field, Deformation gradient, Stretch ratios, Polar decomposition of deformation gradient, Velocity gradient, Rate of deformation, Vorticity, Length, area and volume elements in deformed configuration; Material and spatial time derivatives - velocity and acceleration, Cauchy stress tensor, state of stress, concept of first and second Piola-Kirchoff stress tensors.

3. Fundamental Laws in Continuum Mechanics:

Material derivatives of Line, Surface and Volume Integrals, Conservation of mass, continuity equation, Conservation of linear and angular momentum, Conservation of energy; Continuum Thermodynamics: Basic laws of thermodynamics; Energy equation; Entropy; Clausius-Duhem inequality.

4. Constitutive Relations and Material Models:

Constitutive Assumptions; Ideal Fluids; Elastic Fluids, Hyperelastic Material; Notion of Isotropy; Isothermal Elasticity - Thermodynamic Restrictions, Material Frame Indifference, Material Symmetry; Hooke's law, Stokes problem, Newtonian and Non-Newtonian fluids.

Learning Outcomes:

- The students will understand the various theoretical elements of continuum mechanics, and how these elements apply to solids and fluids.
- The students will be able to derive and apply the equations of continuum mechanics in the following areas: stress and strain analysis, deformation, work and energy, theory of elasticity, viscoelasticity, theory of plasticity, fluid mechanics, and the basis for constitutive equations.
- The students will be able to use continuum theory descriptions in their research work. Furthermore, it will also be helpful for them to understand research or scientific articles with continuum formulations.

Assessment Method

Mid semester examination, End semester examination, Class test/Quiz, Assignments

Reference Books

1. Mase, G. T., and Mase, G. E., Continuum Mechanics for Engineers, CRC Press, 2nd Edition, 1999.

- 2. Malvern, L. E., Introduction to the Mechanics of a Continuous Medium, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1969.
- 3. Rudnicki, J. W., Fundamentals of Continuum Mechanics, John Wiley & Sons, 2015.
- 4. Lai, W. M., Rubin, D., and Krempl, E., Introduction to Continuum Mechanics, Butterworth-Heinemann, 4th edition, 2015.
- 5. Reddy, J.N., An introduction to continuum mechanics, Cambridge University Press, 2013.
- 6. Jog, C.S., Foundations and applications of mechanics: Volume I: Continuum mechanics, Narosa Publishing House, 2007.

Course Number	ME6104
Course Credit	L-T-P-C: 3-0-0-3
Course Title	Refrigeration and Air Conditioning
Learning Mode	Classroom Lecture
Learning	Complies with PLOs 1-3
Objectives	Students will be able to:
	(a) comprehend the nomenclature of refrigerants, their physical,
	chemical, thermodynamic requirements and the environmental concerns,
	(c) design different components of vanour compression refrigeration
	(c) design unreferit components of vapour compression refrigeration
	(d) perform cooling and heating load calculations for a building, and
	(e) design air distribution system
Course	This course is designed to impart the necessary knowledge of the
Description	processes and components involved in refrigeration and air conditioning
_	systems.
Course Outline	Refrigeration
	Refrigeration systems: Vapour compression, vapour absorption and air
	refrigeration system, Thermo- electric refrigeration, Cryogenics.
	Refrigeration Hardware: Refrigerant compressors, refrigerant condensers,
	refrigerant evaporators, receiver, expansion devices, filter-drier, moisture
	Indicator etc.
	Refrigeration Controls: HP/LP cut-out, Solenoid valve, evaporator
	Consister regulator, Accumulators, Suction pressure regulator.
	scheme suction gas throttling scheme
	Refrigerants: Classification and nomenclature, desirable properties of
	refrigerants, common refrigerants, environmental issues-Ozone depletion
	and global warming
	Alternative refrigerants: low GWP and zero ODP newer refrigerants.
	Applications of Refrigeration: Industrial refrigeration, Transport
	refrigeration, food preservation (cold storage)
	Air-conditioning
	Review of Basic psychrometry: Sensible cooling/heating processes,
	humidification /dehumidification processes on psychrometric chart etc.
	Classification of air-conditioners: unitary systems (Window type/self-
	contained/single-package unit), split-unit and Central air conditioning
	System Cooling/Heating load calculations: Transmission load. Solar heat gain
	Occupancy load Equipment load Infiltration and ventilation load
	Duct Design: Design considerations and procedures.
	Air Conditioning controls: basic elements, types of control systems
Learning	The course training will enable students to achieve the learning
Outcome	objectives:
	(a) Selection of an appropriate refrigerant for a given application taking
	into account the physical, chemical, and thermodynamic requirements
	and the environmental concerns
	(D) Analysis of various reirigeration and air conditioning systems,

	 (c) Designing of different components of vapour compression refrigeration system (d) Performing air conditioning load calculations and estimating quantities of dehumidified air required according to the calculated load (e) Designing of air conditioning duct which allows required quantity of air to be delivered to different rooms in a building, 					
Assessm	lent	Mid Semester Examination, End Semester examination, Assignments,				
Method		Quiz, and Seminar				
Suggest	ed Readi	ngs:				
1. I	Dossat R.J	I., 2008. Principles of Refrigeration, Pearson Education (Singapore) Pte.				
Ltd.						
2.	Stoecker W., 1982. Refrigeration and Air Conditioning, Tata McGraw-Hill					
	Publishing Company Limited, New Delhi.					
3.	Arora C.P., 2005. Refrigeration and Air Conditioning, Tata McGraw-Hill					
	Publishing Company Limited, New Delhi.					
4. Ameen A., 2006. Refrigeration and Air Conditioning, Prentice Hall of India		A., 2006. Refrigeration and Air Conditioning, Prentice Hall of India				
	Private I	Limited, New Delhi.				
5.	America	n Society of Heating Refrigerating and Air Conditioning Engineers Inc,				
	2013 AS	HRAE Handbook- Refrigeration Fundamentals.				
6.	America	n Society of Heating Refrigerating and Air Conditioning Engineers Inc,				
	2011 AS	HRAE Handbook- HVAC Applications.				

Sl. No.	Subject Code	SEMESTER II	L	Т	Р	С
1.	ME5201	Advanced Engineering Software Lab	1	0	4	3
2.	ME5203	Measurement and Instrumentation	3	0	0	3
3.	ME5205	Advanced Heat Transfer	3	1	0	4
4.	ME5206	Thermo-Fluid Lab-II	0	0	3	1.5
5.	MEX2XX	DE-III	3	0	0	3
6.	MEX2XX	DE-IV	3	0	0	3
7.	RM6201	Research Methodology	3	1	0	4
8.	IK6201	IKS	3	0	0	3
	TOTAL		19	2	7	24. 5

Course Number	ME5201		
Course Credit	L-T-P-C: 1-0-4-3		
Course Title	Advanced Engineering Software Laboratory		
Learning Mode	Classroom Lectures and Practical		
Learning	Complies with PLOs 1-3.		
Objectives	Exposure to industrial software used in Mechanical Engineering practices.		
Course Description	This course is designed to make students understand commercial software		
	along with the understanding of numerical al techniques.		
Course Outline	CAD/CAM: 2D and 3D geometric transformation, Composite		
	Transformation, Projections; Curves: Cubic, Bezier, Splines; Surfaces:		
	Quadric, Coons patch, Super Quadric, Bezier, B-Splines. Process planning,		
	CL data generation, Automatic CNC code generation.		
	FEM : Solid model creation, different types of elements, chunking of model,		
	meshing, mesh quality, different kinds of analysis: static, dynamic, transient,		
	thermal, electro-magnetic, acoustics, sub- structuring and condensation,		
	Error and convergence.		
	Non-linear static and dynamic analysis, contact analysis, multi-physics		
	problem, rigid body analysis of flexible element.		
	CFD : Different types of CFD techniques, various stages of CFD techniques		
	(1) pre-processor: governing equations, boundary conditions, grid generation,		
	allerent discretization techniques (ii) processor: solution schemes, different		
	solvers (iii) post-processing: analysis of results, valuation, grid independent		
	solving fow problems of laminar and turbulant flow with host transfer		
	solving lew problems of familiar and turbulent now with heat transfer		
	Engineering software's related to CAD/CAM FEM CED with both GUI		
	and script like languages, are to be used for laboratory assignments		
Learning Outcome	At the and of the course, students will be able to use the industrial software		
	for simulating industrial and research problems related to solid and fluid		
	mechanics. A mature understanding of various numerical techniques and		
	their advantages and disadvantages will develop with respect to the		
	software used in the class		
Assessment	Class test & quiz Assignment Class Performance and Viva Practical		
Method	Exam		
Suggested Reading	S:		
1. D. F. Rog	ers and J. A. Adams, "Mathematical Elements for Computer Graphics",		
McGraw- I	Hill, 1990		
2. M. Groove	r and E. Zimmers, "CAD/CAM: Computer-Aided Design and Manufacturing",		
Pearson Ed	Education, 2009.		
3. Saxena and	d B. Sahay, "Computer Aided Engineering Design", Springer, 2007.		
4. J. N. Redd	y, "An Introduction to Finite Element Methods", 3rd Ed., Tata McGraw-Hill,		
2005.			
5. J. Fish, and	T. Belytschko, "A First Course in Finite Elements", 1st Ed., John Wiley and		
Sons, 2007			
6. J. D. Ander	rson, "Computational Fluid Dynamics", McGraw-Hill Inc. (1995).		
7. H. K. Verst	teeg and W. Malalaskera, "An Introduction to Computational Fluid Dynamics",		
Dorling Ki	ndersley (India) Pvt. Ltd. (2008).		
8. S. Biringen	and C Chow, An Introduction to Computational Fluid Mechanics by Example.		

Course Number	ME5203	
Course Credit	L-T-P-C: 3-0-0-3	
Course Title	Measurement and Instrumentation	
Learning Mode	Classroom lecture	
Learning	Complies with PLOs 1-3.	
Objectives	The course aims to provide a basic understanding of the mechanical	
	measurement systems and statistical analysis of experimental data.	
Course	The course contains the generalized configuration and functional elements of	
Description	measuring systems, static and dynamic characteristics of measuring	
	instruments. The course also includes the instrumentation for displacement,	
	strain, velocity, force, torque, power, pressure, sound, flow and temperature	
	measurement.	
Course Outline	Module-1 Basic concepts of measurement, functional elements of instruments,	
	classification of measuring instruments, methods of correction for interfering	
	and modifying inputs, static characteristics of measuring instruments	
	Module-2 Static characteristics of measuring instruments, loading effect and	
	impedance matching, statistical analysis, Chi-square test, least square method,	
	Curve Fitting, Uncertainty analysis and error propagation	
	Module-3 Generalized model of a measuring system, zero and first order	
	system, second order system. First order system- ramp response, impulse	
	response, frequency response, Second order system- step response, ramp	
	compensation transducers	
	Module 4 Flow measurement (hot wire anemometer PIV systems, coriolis	
	flow meter etc.) temperature measurement (thermocounle RTD Infra	
	thermography etc.) heat flux sensors Ontical Methods- Shadowgraph	
	Schilieren and Interferometer	
	Module-5 Strain gauges, piezoelectric transducers pressure measurement.	
	force and torque measurement, displacement and acceleration measurement	
	Module-6 Sound measurement, thermophysical properties measurement, flow	
	visualization, air pollution sampling and measurement, pollutants-Gas	
	Chromatography.	
Learning	• Students will be able to analyze and behavior and characteristics of	
Outcome	various measuring instruments and record data	
	• Students will be able to analyze and interpret the experimental data	
	• Students will be able to perform uncertainty analysis in the measured and	
	derived quantities.	
Assessment	Mid Semester Examination, End Semester examination, Quiz, assignments	
Method	seminar	
Textbook		
1. E.O. Doebelin, Measurement Systems: Application and Design.		
Reference books		
2 EGREak	art and P.G. Goldstein Measurement Techniques in Heat Transfer	

- 2. E.G.R. Eckert and R.G. Goldstein, Measurement Techniques in Heat Transfer.
- 3. T.P. Holeman, Experimental Methods for Engineers.
- 4. H.D. Young, Statistical Treatment of Experimental Data.

Course Number	ME5205
Course Credit	L-T-P-C: 3-1-0-4
Course Title	Advanced Heat Transfer
Learning Mode	Classroom lecture
Learning	Complies with PLOs 1 and 2.
Objectives	To impart a deep fundamental understanding of the underlying concepts of
	heat transfer using simple to advanced analytical techniques.
Course	The course develops the governing equations for the different modes of heat
Description	transfer, viz. conduction, convection and radiation along with various solution
	strategies applicable to a variety of heat transfer problems.
Course Outline	Conduction: Equations and boundary conduction in different coordinate
	systems; Analytical Solutions: separation of variables, Laplace Transform,
	Duhamel's theorem: Non-impulse initial conditions; Numerical Methods:
	Finite difference and flux conservation; Interfacial heat transfer. Convection:
	Conservation equations and boundary conditions; Heat transfer in laminar
	developed and developing boundary layers: duct flows and external flows,
	analytical and approximate solutions, effects of boundary conditions; Heat
	transfer in turbulent boundary layers and turbulent duct flows; Laminar and
	turbulent free convection, jets, plumes and thermal wakes, phase change.
	Radiation: Intensity, radiosity, irradiance, view factor geometry and algebra;
	formulations for black and non– black surfaces, spectrally–selective surfaces
	(solar collectors); Monte Carlo methods for radiation exchange; The radiative
	transfer equation, extinction and scattering properties of gases and aerosols,
	overview of solution methods and applications. Interaction between
	conduction, convection and radiation. Coupled problems, Examples in manufacturing and electronic cooling applications: Micro channels and micro
	fine
Learning	 Students will be equipped with the analytical tools to analyse the thermo-
Outcome	fluid phenomena encountered in research/engineering problems
outcome	 Ability to physically interpret the theoretical solutions to heat transfer
	nrohlems
	 Ability to analytically solve conduction equation for multi-dimensional
	problems of engineering interest
	 Development of numerical codes for solving simple conduction heat
	transfer problems
	• To be able to solve internal and external laminar flows with heat transfer
	 Basic knowledge of turbulence modelling
	 Applying the principles of radiation heat transfer to practical problems
	such as design of solar collectors
Assessment	Mid Semester Examination End Semester examination Ouiz Homework
Method	assignments. Mini-projects, presentations
Suggested Reading	2S:
	Hast Conduction 2nd ad John Wilsy & Song 1002
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ener Y Heat Conduction 3rd edition Taylor & Francis 1003
3 F P Incroper	a and D P Dewitt Introduction to Heat Transfer 3rd ed John Wiley & Sons 1996

- 4. W. M. Kays and E. M. Crawford, Convective Heat and Mass Transfer, Mc Graw Hill, 1993.
- 5. Adrian Bejan, Convective Heat Transfer, John Wiley and Sons, 1995.
- 6. M F Modest, Radiative Heat Transfer, McGraw-Hill, 1993
- 7. R Siegel and J R Howell, Thermal Radiation Heat Transfer, 3rd ed, Taylor & Francis, 1992

ME5206	Thermal Fluid Laboratory-II	(0-0-3-1.5)

Course Learning Objective:

Complies with PLOs 2 and 3.

• Design, execution, and evaluation of physical experiments in heat transfer and fluid mechanics.

Course Learning Outcome:

- Hands-on experience in heat transfer and fluid mechanics experiments.
- Interpretation and presentation of experimental results.

Prerequisite: NIL

Syllabus:

Change Heat Transfer: pool boiling, Leidenfrost, flow boiling, dropwise condensation, film wise Condensation, Surface Tension and Capillarity: wettability and contact angles on hydrophilic, hydrophobic and super-hydrophobic surfaces using a micro-goniometer, Wilhelmy plate method, capillarity, droplet impingement on hydrophilic, hydrophobic and super-hydrophobic surfaces, Turbulence: jet and plumes, Solar Thermal: solar intensity measurement using a Pyranometer, estimation of emissivity using heat source, metal plates and IR camera, evaluation of a solar flat-plate collector system in thermosyphonic and forced flow modes at different radiation levels, inlet water temperature, wind speeds, flow rate, Flow Visualization and Analysis: smoke and dye based flow visualization, e-PIV, μ -PIV.

	Department Elective - III					
Sl. No.	Subject Code	Subject	L	Т	Р	С
1.	ME6201	Turbulent Shear Flow	3	0	0	3
2.	ME6202	Cryogenics	3	0	0	3
3.	ME6203	Laser Processing of Materials	3	0	0	3

Course Number	ME6201				
Course Credit	L-T-P-C: 3-0-0-3				
Course Title	Turbulent Shear Flows				
Learning Mode	Classroom lecture				
Learning	Complies with PLOs 1-3				
Objectives	The primary focus of this course is to introduce students to the basic and				
5	advanced concepts of turbulent flows. To get familiar with the different				
	statistical methods employed for turbulent calculations. Understanding				
	the turbulent flows and their calculation related to wall-bounded and free				
	shear flows.				
Course	This course discusses first discussed flow instability and how turbulent				
Description	flows are onset. Then it discusses methods of identifying a turbulent				
	flow and the governing equation related to the same. Thereafter				
	different statistical tool to study turbulent flows are explained. The				
	turbulent flow calculations related to various fundamental types of shear				
	flows are discussed.				
	Students who may find this course useful: PhD, M. Tech., and 3rd/4th-				
	Engineering Departments				
	Prerequisite: Eluid Mechanics or an equivalent course				
Course Outline	1 Elow instability and transition to turbulance				
Course Outline	2 Nature of turbulence				
	3 Indicial notation for tensors				
	4 Fourier transforms and Parseval's theorem				
	5. Governing equations of turbulence				
	6. Eulerian Lagrangian and Fourier descriptions of turbulence				
	7. Statistical description of turbulence (Reynolds-averaged				
	Navier-Stokes and Reynolds stress evolution equations)				
	8. Kolmogorov's hypotheses				
	9. Filtered description of turbulence (Bridging methods and				
	large eddy simulation)				
	10. Boundary layer flow and other important turbulent shear				
	flows (wake, jet, channel flow, etc.)				
	11. Development of turbulence closure models (Boussinesq				
	approximation and Reynolds-stress evolution equation				
	12 Papid distortion theory (PDT) of turbulence				
	Turbulence processes (Cascade dissipation material element				
	deformation mixing etc.)				
Learning	At the end of the course, students will have achieved the following				
Outcome	learning outcomes:				
	• Understanding of flow instabilities which leads to turbulent flows				
	• Ability to distinguish a turbulent flow from laminar flow				
	• Understanding of various statical tools required for study of turbulant flavor				
	turbulent flows				
	Ine concepts bening KAINS, LES and DINS computations				
	• Understating of boundary layer flow and other important				
A	Mid Semester Examination End Semester in the Animatic				
Assessment	Ivia Semester Examination, End Semester examination, Assignment,				
wiethod	Term Paper Presentation				

Suggested Readings:

Text Books:

- 1. Pope, S. B., Turbulent Flows, Cambridge University Press, 2000.
- 2. Wilcox, D.C., Turbulence Modeling for CFD, D.C.W. Industries, 3rd Edition, 2006.
- 3. White, F.M., Viscous Fluid Flow, TATA McGraw Hill, 2011
- 4. Tennekes, H. and Lumley, J.L., A First Course in Turbulence, The MIT Press, 1972.

Course	ME6202
Number	
Course Credit	L-T-P-C: 3-0-0-3
Course Title	Cryogenics
Pre-requisite	Basic and Applied Thermodynamics
Learning	Classroom Lecture
Mode	
Learning	Complies with PLOs 1-2
Objectives	• To present an introductory knowledge of Cryogenic Engineering.
	• To develop an Intuitive understanding of Liquefaction process,
	gas separation process, thermophysical and mechanical
	properties of materials at cryogenic temperature.
	• To encourage creative thinking and understanding of Cryogenic
	Engineering.
Carrier	This second is desired to import the measure leaves leaves of the
Description	This course is designed to impart the necessary knowledge of the
Course	Introduction to Cryogenics and its applications
Outline	Properties of materials at cryogenic temperature: T-s diagram of a
Outime	cryogenic fluid Properties of cryogenic fluids: Argon Nitrogen
	Oxygen. Neon. Hydrogen (ortho/para). Helium (He ³ and He ⁴). Liquid
	He-I and He-II (superfluid He) and its applications. Mechanical,
	Thermal, Electrical and Magnetic properties of materials (metals and
	nonmetals) at cryogenic temperature, Structure of metals and plastics.
	Gas Liquefaction and Refrigeration Systems: Basics of
	refrigeration/Liquefaction, Production of low temperatures, Ideal
	thermodynamic temperature cycle, Various liquefaction cycles. J-T
	expansion of real gas, adiabatic expansion, Ideal thermodynamic cycle.
	Linde-Hampson system, Precooled Linde-Hampson system, Effect of
	Heat exchanger effectiveness on Linde-Hampson system, some other
	liquefaction cycles such as Claude Cycle, Kapitza cycle, Collins cycle,
	Cas Separation storage transportation: Region of gas separation
	Ideal gas separation system Principles of gas separation Rectification
	and plate calculations
	Introduction to Cryocoolers. Cryogenic heat pipes: Cryocoolers
	classification and basics, Applications, Stirling cryocooler, Comparison
	of GM, Stirling and Pulse tube cryocooler. Introduction to Cryogenic
	engines.
	Cryogenic Insulations: Types of insulation, Vacuum, evacuated powder,
	opacified powder, Multilayer insulation.
	Vacuum Technology: Need of vacuum in cryogenics, Vacuum
	Tundamentals, Various types of Vacuum pumps.
	Instrumentation in Cryogenics: Need of cryogenic instrumentation, Manufacture of Thermo physical properties. Various Sensors
	Safety in Cryogenics: Need for safety Basic Hazards, Protection from
	hazards
Learning	Graduates will be able to
Outcome	• do thermodynamic analysis of different liquefaction plants and
Guttonite	choose a suitable method of liquefaction

	 choose suitable materials for cryogenic systems perform research in the area of cryogenics design safe and efficient cryogenic systems display new contemporary methods and tools to carry out thermophysical and mechanical investigations, analysis, and processing of cryogenic machines, plants and equipment.
Assessment Method	Quiz, Seminar, Mid & End semester examinations
Reference b 1. Randa Press, No 2. Timm (1989). 3. Pipko 4. Thom York (20 5. G.M (1983). 6. G.M V 7. Mam Learning	 books all F. Barron, "Cryogenics Systems", Second Edition, Oxford University ew York (1985). erhaus Flynn, "Cryogenic Process Engineering", Plenum Press, New York v, "Fundamentals of Vacuum Engineering", Mir Publishers, Moscow. as M. Flynn, "Cryogenic Engineering", second edition, CRC press, New 005). Walker. "Cryocooler- Part 1: Fundamentals" Plenum Press, New York Walker. "Cryocooler- Part 2" Plenum Press, New York (1983). ata Mukhopadhyay, "Fundamentals of Cryogenic Engineering", PHI 3, Pvt. Ltd, New Delhi (2010).

Course Number	ME6203
Course Credit	L-T-P-C: 3-0-0-3
Course Title	Laser Processing of Materials
Learning Mode	Classroom Lecture
Learning	Complies with PLOs 2 and 3
Objectives	This course aims to
	(a) Understand the fundamentals of laser, laser-material interactions,
	and physics involved in the laser processing of materials.
	(b) Understand and analyze various laser machining processes used in manufacturing from macro scale to micro scale
	(c) Understand and analyze various laser joining processes and surface
	modification techniques.
	(d) Understand laser-based 3D manufacturing techniques.
	(e) Acquainted with recent developments in the field of laser material
	processing.
Course	This course is designed to impart the necessary basic knowledge of
Description	laser, laser-material interaction, and a wide range of applications of
	laser material processing.
Course Outline	Module-I : Laser Fundamentals
	Stimulated Emission, Population Inversion and Amplification;
	Laser Beam Characteristics: Wavelength, Coherence, Polarization,
	Mode and Beam Diameter; Industrial Lasers: Solid-Sate Lasers,
	Gas Lasers, Semiconductor Lasers, Liquid Dye Lasers, etc; Laser
	Characteristics of Materials: Thermal Effects Heating Melting
	Vaporization and Plasma Formation: Time scales
	vuporizuion una riusina rormation, rime seules.
	Module-II: Laser Machining
	Laser Drilling: Melt Expulsion During Laser Drilling, Analysis of
	Laser Drilling Process, Laser Drilling Applications. Laser Cutting:
	Evaporative Laser Cutting, Laser Fusion Cutting, Reactive Laser
	Cutting, Controlled Fracture Technique; Underwater Cutting. Laser
	Micromachining: Laser Ablation, Laser-Assisted Chemical
	Etching; Laser Micromachining Techniques - Direct Writing
	Applications
	Applications.
	Module-III: Laser Fabrication
	Laser Welding: Process Mechanisms - Keyholes and Plasmas,
	Analysis of Laser Welding Process. Laser Surface Modification:
	Heat Treatment, Rapid Solidification, Alloying and Cladding,
	Surface Texturing. Laser Rapid Prototyping: Classification of RP
	Processes, Laser Based RP Processes, Applications. Mathematical
	Modening.
	Module-IV: Special Topics

	Laser Interference Processing; Laser Shock Processing; Biomedical		
	Laser Processes, etc.		
T '			
Learning	The course training will enable students to achieve the following		
Outcome	learning objectives:		
	(a) Basics of laser and laser parameters for various laser-based manufacturing processes.		
	(b) The advantages and limitations of laser-based manufacturing		
	processes with physical insights.		
	(c) The effects of various process parameters in laser material		
	processing.		
	(d) Basic foundation knowledge and analytical skills to perform		
	research on laser material processing.		
Assessment	Mid Semester Examination End Semester Examination		
Method	Assignments Ouiz and Seminar		
Suggested Deadin			
Suggesteu Keauin	$\mathbf{g}_{\mathbf{s}}$		
I. W. M. Steen	h and J. Mazumder, Laser Material Processing, 4 th Edition, Springer,		
2010.			
2. N. B. Dahot	tre and S P Harimkar, Laser Fabrication and Machining of Materials,		
Springer, 20	008.		
3. E. Kannatey	/-Asibu, Principles of Laser Materials Processing, , Wiley, 2009.		
4. M. von Allmen and A. Blatter, Laser-Beam Interactions with Materials, 2'nd			
Edition, Springer, 1998.			
5. John C. Jon, Laser Processing of Engineering Materials, Elsevier, 2005			
6 I F Ready	6 I F Ready (Editor) LIA Handbook of Laser Materials Processing Springer		
2001	(Dator), Dir Francoook of Daber Haterians Freedoming, opringer,		
7 Selected Io	Irnal Paners		
7. Selected Joi	urnal Papers		

Department Elective - IV							
Sl. No.	Subject Code	Subject	L	Т	Р	С	
1.	ME6204	Aerodynamics	3	0	0	3	
2.	ME6205	Advances in IC Engine	3	0	0	3	
3.	ME6206	Microfluidics and Microsystems	3	0	0	3	

Course Number	ME6204
Course Credit	L-T-P-C: 3-0-0-3
Course Title	Aerodynamics
Learning Mode	Classroom lecture
Learning	Complies with PLOs 1-3
Objectives	The primary focus of this course is to introduce students to the basic principles of aerodynamics. The course emphasis will be on the fundamental concepts related to theoretical calculations related to incompressible flow over airfoils and wings. A brief understanding of compressible flows over airfoil will also be given. Finally, students will be familiarized with the modern-day applications of aerodynamics.
Course	This course broadly covers the following topics:
Description	 Review of Fluid Mechanics concepts related to aerodynamics. Incompressible Flow Applications (airfoils and wings) Compressible Flow Applications (airfoils) Advanced Applications in the field of aerodynamics Prerequisite: Fluid Mechanics, Thermodynamics, Heat Transfer or an equivalent course
Course	Review of Fluid Mechanics: Navier-Stokes equations, Potential flows,
Outline	Concepts of lift and drag, Boundary layer theory, Application of potential flow and boundary layer theory in design of airfoils, Turbulence, Compressible flows, Shock and expansion waves Incompressible Flow Applications: Incompressible flow over airfoils: Kutta condition, Kelvin's circulation theorem, Classical thin airfoil theory, Incompressible flow over finite wings: Prandtl's classical lifting line theory, Three-dimensional incompressible flows, Panel methods and numerical techniques, Wind tunnel experimentation, Dynamic stall, Delta wings.
	Compressible Flow Applications: Introduction to subsonic compressible flow over airfoils, Supercritical Airfoil, Supersonic flows. Advanced Applications: Aerodynamics of wing-fuselage system and control surfaces, Helicopters, Aerodynamics of birds/insects, Micro-air Vehicle
Learning	At the end of the course, students will have achieved the following
Outcome	 learning outcomes: Understanding of the basic of aerodynamics Ability to perform theoretical calculation for aerodynamic forces related to airfoils and wings. Understanding the aerodynamics of key flying objects which one encounters in modern day life
Assessment	Mid Semester Examination, End Semester examination, Assignment,
Method	Term Paper Presentation
Suggested Readin Text and Referen	igs: ces:

- 1. J. D. Anderson, Fundamentals of Aerodynamics, McGraw-Hill Inc. (Indian Edition), 6th Edition.
- 2. Josep Katz and Allen Plotkin, Low-speed aerodynamics, Cambridge University Press, 2001.
- 3. Wei Shyy, Yongsheng Lian, Jian Thang, Dragos Viieru and Hao Liu, Aerodynamics of Low Reynolds Number Flyers, Cambridge University Press, 2009.
- 4. Holt Ashley and Landhall. M. Aerodynamics of Wings and Bodies. Addison-Wesley 1965.
- 5. Jones.R.T. Wing Theory. Princeton University Press 1990.

Course Number	ME6205	
Course Credit	L-T-P-C: 3-0-0-3	
Course Title	Advances in IC Engines	
Learning Mode	Class room lecturer	
Learning	Complies with PLOs 1 and 2	
Objectives	• To understand the fundamental Principles of IC engines.	
	• To explore recent advancements in combustion technologies	
	• To analyze the impact of alternative fuels on engine performance	
	and emissions	
	• To investigate strategies for improving engine efficiency and	
	reducing environmental impact.	
	• To understand the generation of undesirable exhaust emissions	
	• To understand the Optical diagnostics in I C Engines	
	• To examine the integration of hybrid and electrification	
	technologies with I C engines	
Course	This course is designed to impart the knowledge of advanced concepts	
Description	in Internal combustion engine such as alternative fuels, emission control,	
	optical diagnostics, Hybrid and electric vehicles etc.	
Course Outline	Introduction:	
	Basic Introduction to SI and CI engine, Engine Performance	
	Parameters.	
	Conventional fuels & Alternative fuels:	
	Energy Scenario, Transport Fuel, Petroleum Based Liquid Fuel	
	Emulsified Eucles Methanol Ethanol and higher versions of	
	alcohols Gaseous fuels include CNG LPG LNG DME	
	hydrogen and ammonia	
	Combustion in SI and CI Engines:	
	Combustion in SI engines. Ignition Process and Limit. Spark	
	Plug, Spark and Flame Propagation, Stages of Combustion in	
	SI engines, Flame Front Propagation, Effects of Engine	
	variables on Ignition Lag, and Factors Influencing the Flame	
	Speed.	
	Combustion in CI engine, Stages of CI engine combustion.	
	Knocking in SI and CI engine, Effect of Engine Variables on	
	Knock, Comparison of knocking in SI & CI engine, Factors	
	Affecting Detonations. Stoichiometric Combustion of Fuels,	
	Adiabatic Flame Temperature.	
	Advances in the compustion process	
	Considered in Combustion Chamber Design Modern	
	developments in IC Engines such as EGR MPEL GDI HCCL	
	and Turbocharging	
	Engine Ignition cooling and Lubrication system	
	Different Ignition Systems and Working, Components of	
	battery Ignition System, Parameter Affecting Engine Heat	
	Transfer, Engine Friction and Types, Factors affecting	
	Mechanical Friction, Lubrication and its mechanism, Different	
	Lubrication System (Mist, Wet Sump, Dry Sump)	
	Fuel Injection System:	

	Electronic Fuel in Injection (EFI) System, Components of an	
	EFI system, Fuel Injectors, Types of Injection, Electronic	
	control of engines, Requirement of Diesel Injection System,	
	Types of Injection system for CI engine, Fuel Pump,	
	Nozzles. Importance of ECU.	
	Measurement and Testing of Engine Performance Parameters:	
	Measurement of Speed, Fuel Consumption Measurement,	
	Volumetric type flowmeters, Measurement of Air	
	consumption, Types of the dynamometer, Measurement of	
	Brake Power, Frictional Power, and Indicated Power,	
	Endurance test of I C Engine as per Indian standard	
	Air Pollution and its Control	
	Exhaust Emissions, Effect of Various Parameter on Exhaust	
	Emissions, Exhaust Emissions from SI and CI Engines,	
	Working of NDIR System, Flame Ionization Detector,	
	Schematic and Working of FID system, Chemiluminescence	
	Analyzer, Smoke opacimeters, Principle and working of	
	emission reduction technologies Diesel Oxidation catalyst	
	(DOC), Diesel Particulate Filter (DPF), Selective Catalytic	
	Reduction (SCR) and Lean NOX trap (LNI) etc. Indian	
	US Europeen and Decret stage emission standards	
	Ontical Diagnostics in IC Enginese	
	Spray and combustion measurements in the optical engine and	
	constant volume combustion chamber. Application of optical	
	techniques such as High-speed imaging Schlieren imaging	
	PIV PLIE Diffused back Illumination (DBI) Phase Doppler	
	Anemometry (PDA) Combustion Luminosity Imaging etc	
	Hybrid and Electric vehicles	
	History of electric vehicles Vehicle Power Plant and	
	Transmission Characteristics. Basic architecture of Hybrid	
	Drive trains. Power flow in HEVs.	
Learning	By the end of this course, mechanical engineering undergraduate	
Outcome	students should be able to:	
	• Understand advanced concepts in Internal Combustion Engines.	
	• Understand the application of alternative fuels in I.C. Engine and	
	their implications for future engine design and operation.	
	• Able to identify and explain the function of various engine	
	components and systems, such as fuel injection systems, ignition	
	systems, and exhaust after-treatment systems.	
	• Understand the advanced techniques for reducing emissions	
	from I.C. engines.	
	• Understand the concepts of optical diagnostic techniques in I.C.	
	Engine and use them in real-life experiments.	
	• Understand the technologies of hybrid and electric vehicles.	
Assessment	Mid Semester Examination, End Semester Examination, Assignments.	
Method	Quiz, and Seminar.	
Suggested Readings:		
Text Books:		
1. IC Engine Fundamentals: John B. Heywood, 2 nd Edition, Mc Graw Hill, 2018		
	• • • • • • • • • • • • • • • • • • • •	

- 2. Fundamentals of IC Engines: P. W. Gill and James Smith, Fourth Revised Edition, Oxford IBH, 1959
- 3. Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design Lino Guzzella and Antonio Sciarretta, , CRC Press, 2nd Edition, 2009
- 4. Electric Vehicle Technology Explained: James Larminie and John Lowry, Wiley, 1st Edition, 2003

Reference Books:

- 1. Introduction to Internal Combustion Engines: Richard Stone, SAE Inc., 1999
- 2. IC Engines Combustion and Emissions, B. P. Pundir, Narosa Publications, 2010
- 3. IC Engine Fundamentals: V. Ganesan, Tata Mc Graw Hill
- 4. The Internal combustion Engine in theory and practice: C F Taylor,2nd Edition, MIT Press, Cambridge, 1985.
- 5. Hydrogen Fuel for Surface Transportation: Joseph Norbeck, SAE Publications, 1996.

Course Number	ME6206
Course Credit	L-T-P-C: 3-0-0-3
Course Title	Microfluidics and Microsystems
Learning Mode	Classroom lecture
Learning	Complies with PLOs 1-3
Objectives	• Equip the students with basics of fluid mechanics at microscale,
	unique phenomenon dominant at microscale and their benefits for real
	• To understand this interdisciplinary science of microfluidics which
	uses knowledge from fluid mechanics at microscale, chemistry, Electrostatics, Micro-electromechanical systems (MEMS) and Biology to help humanity by designing novel microsystems such as point of care diagnostic devices.
Course Description	Microfluidics is the research discipline dealing with transport phenomena and fluid-based devices at microscopic length scales of microns. This course aims to fulfil the need of basic understanding about fluid flow at microscale. Further, it introduces the students with electrostatics and its utility towards design of new microfluidic systems such as electroosmotic pump and Knudsen pump. In the later part, distinct types of microfabrication techniques are explained. The last chapter introduces many modern techniques related to biomedical engineering and medical science such as DNA sequencing, micropumps and point of care diagnostic devices. Prerequisite: NIL
Course Outline	Introduction: Origin, Definition, Fluid quantity, Benefits, Challenges, Commercial activities.
	Scaling laws : Scaling in nature, Scaling of physical systems, Trimmer's vertical bracket notation, limitations.
	Micro-scale flows : Intermolecular forces, States of matter, Continuum assumption, Governing equations, Constitutive relations, Gas and liquid flows, Boundary conditions, Slip theory, Transition to turbulence, Low Re flows, Entrance effects, Liquid film flow in an inclined plane, Couette flow, Poiseuille flow, Stokes drag on a sphere, Time-dependent flows, Two-phase flows, Couette flow with slip, Hydraulic resistance and Circuit analysis, Straight channel of different cross-sections, Channels in series and parallel.
	Capillary flows : Surface tension and interfacial energy, Young-Laplace equation, Contact angle, Capillary length and capillary rise, Interfacial boundary conditions, Marangoni effect.
	Electrokinetics : Electrohydrodynamics fundamentals, Electro-osmosis, Dielectrophoresis, Electro-capillary effects, Continuous electro-wetting, Direct electro-wetting, Electro-wetting on dielectric.
	Microfabrication: Materials, Clean room, Silicon crystallography,

	 Miller indices, Oxidation, Photolithography- mask creation, spin coating, exposure and development, Etching, Bulk micromachining, Wafer bonding, Polymer microfabrication: PMMA/COC/PDMS substrates, micromolding, hot embossing, fluidic interconnection. Microfluidics Components: Micropumps, Microvalves, Microflow Sensors, Micromixers, Droplet Generators, Microparticle Separators, Microreactors, DNA sequencers, Point of Care Devices. 		
Learning At the end of the course students will have achieved the follow			
Outcome	learning objectives:		
	• Design a microfluidic network to meet the need of a microluidic system by minimizing the overall drag reduction.		
	• Be capable of understanding the design of existing microfluidic systems such as micropumps, Micro-reactors, DNA sequencer		
	and other point of care devices.		
	• To be equipped to design and develop new microfluidic systems.		
Assessment	Mid Semester Examination, End Semester examination, Class test &		
Method	quiz, Assignment, Term Paper Presentation		
Suggested Readin	igs:		
Text/Reference B	ooks:		
1. Nguyen, N	. T., Werely, S. T., Fundamentals and applications of Microfluidics,		
Artech house Inc., 2002.			
2. Bruus, H.,	2. Bruus, H., Theoretical Microfluidics, Oxford University Press Inc., 2008.		
3. Madou, M. J., Fundamentals of Microfabrication, CRC press, 2002.			
4. Labeling, F	4. Tabeling, P., Introduction to microfluidics, Oxford University Press Inc., 2005.		
5. KIRDY, B.J., MICRO- and Nanoscale Fluid Mechanics: Transport in Microfluidic			
6 Colin S N	Aicrofluidics John Wiley & Sons 2009		

6. Colin, S., Microfluidics, John Wiley & Sons, 2009.